Standard Diffusion Approximation (SDA, P1)

[1] R. C. Haskell, L. O. Svaasand, T-T. Tsay, T-C. Feng, M. S. McAdams, and B. J. Tromberg. Boundary conditions for the diffusion equation in radiative transfer. Journal of the Optical Society of America A, 11(10):2727-2741, 1994.

[2] Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson. Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue. Applied Optics, 35(13):2304-2314, 1996.

[3] Kienle and M. Patterson. Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium. Journal of the Optical Society of America A, 14(1):246-254, 1997.

[4] Kienle and M. Patterson. Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source. Physics in Medicine and Biology, 42(9):1801-1819, 1997.

[5] Kienle, T. Glanzmann, G. Wagnières, and H. van den Bergh. Investigation of two-layered turbid media with time-resolved reflectance. Applied Optics, 37(28):6852-6862, 1998.

[6] Kienle and T. Glanzmann. In vivo determination of the optical properties of muscle with time-resolved reflectance using a layered model. Physics in Medicine and Biology, 44(11):2689-2702, 1999.

Higher-Order 'Diffusion' Solvers (PN/δ-PN)

[7] W. M. Star. Comparing the P3-approximation with diffusion theory and with Monte Carlo calculations of light propagation in a slab geometry. SPIE Institute Series, IS 5:146-154, 1989.

[8] V. Venugopalan, J. S. You, and B. J. Tromberg. Radiative transport in the diffusion approximation: An extension for highly absorbing media and small source detector separations. Physical Review E, 58(2):2395-2407, 1998.

[9] T. Spott and L. O. Svassand. Collimated sources in the diffusion approximation. Applied Optics, 39(34):6453-6465, 2000.

[10] E. L. Hull and T. H. Foster. Steady-state reflectance spectroscopy in the P3 approximation. Journal of the Optical Society of America A, 18(3):584-599, 2001.

[11] S. A. Carp, S. A. Prahl, and V. Venugopalan. Radiative transport in the delta-P1 approximation: Accuracy of fluence rate and optical penetration depth predictions in turbid semi-infinite media. Journal of Biomedical Optics, 9(3):632-647, 2004.

[12] G. W. Faris. P3 approximation for frequency-domain measurements in scattering media. Applied Optics, 44(11):2058-2071, 2005.

[13] I. Seo, C. K. Hayakawa, and V. Venugopalan. Radiative transport in the delta-P1 approximation for semi-infinite turbid media. Medical Physics, 35(2):681-693, 2008.

Conventional Monte Carlo

[14] J. Spanier and E. M. Gelbard. Monte Carlo Principles and Neutron Transport Problems. Addison Wesley Publishing Co. 1969. (Re-issued in 2008 by Dover Publications)

[15] B. C. Wilson and G. Adam. A Monte Carlo model for the absorption and flux distributions of light in tissue. Medical Physics, 10(6):824-830, 1983.

[16] S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch A Monte Carlo Model of Light Propagation in Tissue. SPIE Institute Series, IS 5:102-111, 1989.

[17] L. H. Wang, S. L. Jacques, and L. Q. Zheng. MCML-Monte Carlo modeling of light transport in multilayered tissues. Computer Methods and Programs in Biomedicine, 47(2):131-146, 1995.

[18] L. H. Wang, S. L. Jacques, and L. Q. Zheng. CONV-Convolution for responses to a finite diameter photon beam incident on multi-layered tissues. Computer Methods and Programs in Biomedicine, 54(3):141-150, 1996.

[19] S. L. Jacques and L. Wang. "Monte Carlo Modeling of Light Transport in Tissues", In Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C van Gemert, Editors, Plenum Press, 1995.

Condensed History Monte Carlo

[20] K. Bhan and J. Spanier. Condensed history Monte Carlo methods for photon transport problems. Journal of Computational Physics, 225(2):1673-1694, 2007.

Electric Field Monte Carlo

[21] M. Xu. Electric field Monte Carlo simulation of polarized light propagation in turbid media. Optics Express, 12(26):6530-6539, 2004.